Synthesis of Novel α-Amino-N-substituted **Thioacetimidates**

Alan R. Katritzky,* Martin A. C. Button,‡ and Sophie Busont§

Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611

katritzky@chem.ufl.edu

Received December 4, 2000

Introduction

Glycineamidines 2 are useful synthetic building blocks for the synthesis of aminoimidazoliums, aryliminopiperazine-2,3-diones,² and novocaine derivatives.³ The analogous α -amino-N-substituted thioacetimidates 1 are also potentially useful intermediates; however, few of them have been previously reported.4 a-Amino-thioacetimidate derivatives were shown to exhibit herbicidal activity. 4b In general, thioimidates are known to be very useful synthetic precursors in organic chemistry. 4c

Imidoyl halides are versatile intermediates⁵ and are usually prepared by reaction of phosgene, thionyl chloride, oxalyl chloride, or phosphorus pentachloride with amides.5 The major disadvantage of imidoyl halides is their inherent instability and, since they are particularly susceptible to hydrolysis, they are rarely isolated and purified prior to use. 1-Imidoylbenzotriazoles provide stable alternatives since they are substantially more stable and easier to isolate than the corresponding imidoyl halides.⁶ The benzotriazolyl moiety in imidoylbenzotriazoles can be exchanged for various nucleophiles, ^{6a,d} and photolysis leads to 1,2-disubstituted benzimidazoles. 6c

[‡] Present address: Charnwood Catalysis, PO Box 5775, Loughborough, Leicestershire, LE11 3WE, UK.

Present address: 3M Health Care Ltd, 3M House, Morley Street,

Loughborough, Leicestershire, LE11 1EP, UK.
(1) Korshin, E. E.; Soboleva, G. I.; Levin, Y. A.; Podval'nyi, E. A.; Efremov, Y. Y. J. Org. Chem USSR (Engl. Transl.) 1993, 482.

(2) Korshin, E. E.; Soboleva, G. I.; Levin, Y. A.; Podval'nyi, E. A.; Efremov, Y. Y. Bull. Acad. Sc. USSR 1991, 40, 212; as abstracted by

(3) Kaufmann, H. P.; Budwig, J.; Mohnke, K. Chem. Ber. 1942, 75,

(4) (a) Takahata, H.; Takamatsu, T.; Chen, Y.-S.; Ohkubo, N.; Yamazaki, T.; Momose, T.; Date. T. *J. Org. Chem.* **1990**, *55*, 3792. (b) Entwistle, I. D. US Patent 4,131,449, 1978. (c) Neilson, D. G. In *The* Chemistry of Amidines and Imidates; Patai, S., Rappoport, Z., Eds.; John Wiley and Sons: New York, 1991; Vol. 2.

(5) (a) Bonnet, R. In The Chemistry of the Carbon Nitrogen Double Bond, Patai, S., Ed.; Interscience Publishers: London, 1970. (b) In *The Chemistry of Amides*, Zabicky, J., Ed.; Interscience Publishers: London,

1970.
(6) (a) Katritzky, A. R.; Stevens, C. V.; Zhang, G.-F.; Jiang, J.; De Kimpe, N. *Heterocycles* **1995**, *40*, 231. (b) Katritzky, A. R.; Rachwal, S.; Offerman, R. J.; Najzarek, Z.; Yagoub, A. K.; Zhang, Y. *Chem. Ber.* **1990**, *123*, 1545. (c) Katritzky, A. R.; Yang, B.; Abonia, R.; Insuasty, B. *J. Chem. Res.* (S) **1996**, 540. (d) Katritzky, A. R.; Donkor, A.; Fang, Y., *Synthesis* **2000**, *14*, 2029 (e) Katritzky, A. R.; Lan, X.; Yang, J. Z.; Denisko, O. V. *Chem. Rev.* **1998**, *98*, 409.

Previous preparations of 1-imidoylbenzotriazoles comprise: (i) treatment of N-aryl secondary amides with phosphorus oxychloride in the presence of triethylamine and subsequent trapping of the resultant imidoyl chloride with benzotriazole; 6b (ii) treatment of amides with 1,1'sulfinylbenzotriazole 6a,c (generated in situ from 1-trimethylsilylbenzotriazole and thionyl chloride); (iii) via a benzotriazole-mediated Beckmann type rearrangement of oximes.7

1-α-Amino-substituted 1-imidoylbenzotriazoles have not been reported previously. We now disclose an efficient novel synthetic route to such benzotriazoles 5a-k via insertions of isonitriles 3a-d into the benzotriazole nitrogen—carbon bond of *N*-(aminoalkyl)benzotriazoles 4a-f and subsequent nucleophilic displacement of the benzotriazole moiety using thiols to give novel α -amino thioacetimidates 1a-g.

Results and Discussion

N-(Aminoalkyl)benzotriazoles **4a**–**f** were formed by well-established procedures involving condensation of benzotriazole, an aldehyde, and a secondary amine in water (4a-d),8 or by reflux under Dean-Stark conditions in benzene $(4e-f)^9$ (Scheme 1). Although they frequently crystallized as the pure benzotriazol-1-yl isomer, such N-(aminoalkyl)benzotriazoles usually exist in solution as an equilibrating mixture of Bt¹ and Bt² isomers. The reactivity of both isomers is identical or very similar, since they both ionize to the same species.^{6e}

The isonitriles **3a-d** were prepared from the corresponding amides¹⁰ (92-99%) and were usually generated and used in situ.

Reaction of the aromatic **3a-c** or aliphatic isonitriles **3d** with N-(aminoalkyl)benzotriazoles **4a**-**f** in the presence of catalytic boron trifluoroetherate in THF at 20 °C gave crude 1-imidoylbenzotriazoles 5a-k in excellent yields (Table 1). Only the Bt1 isomers of imidoylbenzotriazoles 5a-i,k were observed even when a mixture of the Bt¹ and Bt² isomers of N-(aminoalkyl)benzotriazoles **4a**-**f** were used, a result of isomerization of the starting materials. However, 5j was obtained as a mixture of the Bt¹ and Bt² isomers. The reactions were complete within 1 h, and the products were purified by recrystallization where possible (5a,c,d,f,h,i,j) (87-97%). Compounds 5b,g,k were purified by flash column chromatography (96%, 94%, and 87%, respectively). Attempts to purify imidoylbenzotriazole 5e (45%) by column chromatography afforded a significant amount of the corresponding amide 6 (32%) as well as a trace of novel amidine 7 (5%) (Scheme 1). In general, 1.05–1.10 equiv of the isonitrile gave the products with approximately 95% purity following extractive workup. All 1-imidoylbenzotriazoles, except 5k, could be used for the next step without recrystallization or purification by column chromatography.

Perkin Trans. 1 1990, 1847.

⁽⁷⁾ Katritzky, A. R.; Monteux, D. A.; Tymoshenko, D. O. Org. Lett. **1999**. 1. 577.

⁽⁸⁾ Katritzky, A. R.; Pilarski, B.; Urogdi, L. Org. Prep. Proced. Int. 1989, 21, 135.

⁽⁹⁾ Katritzky, A. R.; Yannakopoulou, K.; Lue, P.; Rasala, D.; Urogdi, J. Chem. Soc., Perkin Trans. 1 1989, 225.
(10) Katritzky, A. R.; Sutharchanadevi, M.; Urogdi, L. J. Chem. Soc.,

BtH + R^{1} H + R^{2} R^{3} H H H R^{2} R^{3} R^{4} R^{3} R^{3} R^{4} R^{4} R^{3} R^{4} R^{4} R^{3} R^{4} R^{4} R^{4} R^{4} R^{3} R^{4} R^{4} R^{3} R^{4} R^{4

Scheme 1a

PhCH₂

^a For yields of $\mathbf{1a} - \mathbf{g}$ and $\mathbf{5a} - \mathbf{k}$, see Tables 1 and 2. For compounds $\mathbf{4a} - \mathbf{b}, \mathbf{d} - \mathbf{f}$ Bt = benzotriazol-1-yl (Bt¹) and benzotriazol-2-yl (Bt²) in ratios from 1:1 to 4:1. For compound $\mathbf{5j}$ Bt = Bt¹:Bt² in a 1:2.6 ratio.

Table 1. 1-Imidoylbenzotriazoles 5a-k

-(CH₂)₅-

d H

5	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R ⁴	yield ^a (%)
a	Н	-(CH ₂) ₂ O(CH ₂) ₂ -	2,5-Cl ₂ C ₆ H ₃	92
b	H	Me	Me	$2,5-Cl_2C_6H_3$	96^b
c	H	-(CH ₂) ₂ O($CH_2)_2$ -	$4-NO_2-C_6H_4$	93
d	Н	-(CH ₂) ₂ O($CH_2)_2$ -	$3-NO_2-C_6H_4$	97
e	Н	Me	Ph	2,5-Cl ₂ C ₆ H ₃	90 $(45)^c$
f	Н	Me	Ph	$3-NO_2-C_6H_4$	91
g	Н	-(CH ₂) ₂ O($CH_2)_2$ -	$C_6H_5CH_2$	94^b
g h	Н	-(CH ₂) ₅ -		$4-NO_2-C_6H_4$	88
i	<i>i</i> Bu	-(CH ₂) ₂ O(CH ₂) ₂ -	$3-NO_2-C_6H_4$	87
j	Ph	-(CH ₂) ₂ O($(CH_2)_{2}$	$2,5$ - $Cl_2C_6H_3$	89
k	Н	-(CH ₂) ₅ -		$2,5$ - $Cl_2C_6H_3$	87^{b}

^a Isolated by recrystallization unless stated. ^b Purified by flash column chromatography. ^c Isolated by column chromatography, crude yield ca. 90%, isolated yield 45% due to significant hydrolysis to amide **6** (32%).

Attempts were unsuccessful in carrying out the analogous isonitrile insertion reactions to prepare $\alpha\text{-thio-}$ or $\alpha\text{-alkoxy-}\textit{N}\text{-substituted}$ thioacetimidates from $\alpha\text{-thio-}$ alkyl- and $\alpha\text{-alkoxyalkyl-}$ benzotriazoles, respectively.

 α -Amino thioacetimidates 1a-g resulted from the nucleophilic displacement in refluxing THF of the benzotriazolyl moiety in 5a,c,e,g,i by an appropriate aliphatic or aromatic thiolate anion, generated in situ from a thiol and sodium methoxide (Scheme 1). Purification by column chromatography on silica gel for compounds 1a,b,d-g, and recrystallization for 1c, led to isolated yields of 44-92% (Table 2). Since the starting material 5 and product 1 often have virtually identical retention factors, they could not be separated by column chromatography unless 5 was completely consumed.

The structures of compounds 1a-g and 5a-k were confirmed by 1H and ^{13}C NMR and mass spectroscopy and elemental analyses. Badly defined peaks and poorly resolved 1H and ^{13}C NMR spectra were often obtained at room temperature for the pure α -amino thioacetimidates 1a-g and for 1-imidoylbenzotriazole 5i; this was due to the slow rotation around the C=N double bond. This was

Table 2. α-Amino N-Substituted Thioacetimidates 1a-g

1	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	\mathbb{R}^5	yield ^a (%)
a	Н	-(CH ₂) ₂ C	O(CH ₂) ₂ -	2,5-Cl ₂ C ₆ H ₃	4-MeC ₆ H ₄	44
b	Н	$-(CH_2)_2C$	$O(CH_2)_2$ -	$2,5$ - $Cl_2C_6H_3$	$C_6H_5CH_2$	53
c	Н	Me	Ph	$2,5$ - $Cl_2C_6H_3$	Ph	92^{b}
d	Н	$-(CH_2)_2C$	$O(CH_2)_2$ -	$4-NO_2C_6H_4$	4-MeC_6H_4	44
e	Н	$-(CH_2)_2C$	$O(CH_2)_2$ -	$C_6H_5CH_2$	4-MeC_6H_4	46
f	Н	$-(CH_2)_2C$	$O(CH_2)_2$ -	$C_6H_5CH_2$	4-1Bu-2-MeC6H3	75
g	ⁱ Bu	$-(CH_2)_2C$	$O(CH_2)_2$ -	$3-NO_2C_6H_4$	4-MeC_6H_4	59

 $^{\it a}$ Isolated by column chromatography unless stated. $^{\it b}$ Isolated by recrystallization.

particularly evident for the C=N carbon at ca. 165–170 ppm and the adjacent methylene carbon at 58–64 ppm in the ¹³C NMR spectra of thioacetimidates **1a**,**c**,**d**,**g** and 1-imidoylbenzotriazole **5i**. Sometimes the C=N carbon signal was extremely broad and barely visible; therefore, integration of the ¹³C NMR spectra became necessary in order to verify the presence of these signals. The positions of the C=N carbon signal in the ¹³C NMR spectra was similar to that observed in previously reported 1-imidoylbenzotriazoles (typically around 155 ppm)^{6a,b} and thiazoles (typically around 165–170 ppm). ¹¹ Increased acquisition times and temperatures of 60 °C for the NMR acquisitions usually afforded better resolved spectra, but occasionally led to decomposition, i.e., as in the case of **1a**.

Conclusion

We have reported an efficient Lewis acid catalyzed isonitrile insertion reaction leading to highly substituted α -amino-substituted 1-imidoylbenzotriazoles $\mathbf{5a}-\mathbf{k}$, stable alternatives to imidoyl halides. Nucleophilic displacement of the benzotriazolyl moiety in $\mathbf{5a}$, \mathbf{c} , \mathbf{e} , \mathbf{g} , \mathbf{i} using a variety of thiols led to novel highly functionalized α -amino thioacetimidates $\mathbf{1a}-\mathbf{g}$.

⁽¹¹⁾ Katritzky, A. R.; Ghiriviga, I.; Cundy, D. J. *Heterocycles* **1994**, *38*, 1041.

Experimental Section

General Comments. Melting points were determined on a hot-stage microscope and are uncorrected. ¹H NMR spectra were recorded on a 300 MHz spectrometer using tetramethylsilane as the internal standard. The ¹³C NMR spectra were recorded at 75 MHz on the same instrument with the solvent CDCl₃ peak as the internal reference. Elemental analyses (C, H, N) were carried out on a Carlo Erba-1106 instrument. Column chromatography was carried out on silica gel (230-400 mesh). THF was distilled from Na and benzophenone under a nitrogen atmosphere prior to use. N-(Aminoalkyl) benzotriazoles 4a-d were prepared in high yields (63-95%) by condensation of benzotriazole, formaldehyde, and a secondary amine in water.8,12 N-(Aminoalkyl)benzotriazoles 4e-f were prepared by reflux of benzotriazole, an aldehyde, and a secondary amine under Dean-Stark conditions in benzene.9 The isonitriles 3a-d were prepared quantitatively from the corresponding amides using phosphorus oxychloride in the presence of diisopropylamine at -10 °C10 and used immediately, or, if stored under inert atmosphere in the freezer, within 24 h.

1-(3-Methyl-1-morpholinobutyl)benzotriazole (4e). Compound **4e** was crystallized from ethanol as white needles (63%); it was present as a 1:1 mixture of Bt¹ and Bt² isomers, mp 89–91 °C; ¹H NMR (CDCl₃) [for both isomers unless stated] δ 0.88–1.02 (m, 12H), 1.36–1.58 (m, 2H), 2.12–2.46 (m, 4H), 2.56–2.70 (m, 8H), 3.60–3.79 (m, 8H), 5.51–5.68 (m, 2H), 7.35–7.44 (m, 3H, 2H for Bt¹ isomer and 1H for Bt² isomer), 7.48 (t, J = 7.5 Hz, 1H, Bt² isomer), 7.60 (d, J = 8.9 Hz, 1H, Bt² isomer), 7.86–7.92 (m, 2H, Bt¹ isomer), 8.09 (d, J = 8.3 Hz, 1H, Bt² isomer). 13 C NMR (CDCl₃) [for both isomers] δ 22.1, 22.3, 22.5, 24.6, 39.5, 39.7, 48.4, 48.9, 66.8, 66.9, 77.7, 84.6, 109.8, 118.1, 119.9, 123.7, 126.1, 127.2, 133.8, 143.4, 145.5. Anal. Calcd for C₁₅H₂₂N₄O: C, 65.75; H, 8.09; N, 20.45. Found: C, 65.31; H, 8.28; N, 20.37.

Preparation of 1-Imidoylbenzotriazoles 5a-k. Imidoylbenzotriazoles 5a-k were prepared by the reaction of N-(aminoalkyl)benzotriazoles $\mathbf{4a} - \hat{\mathbf{f}}$ and an appropriate isonitrile **3a-d**. Boron trifluoride etherate (5-10 drops) was added to a solution of N-(aminoalkyl)benzotriazole (5 mmol) in dry THF at 20 °C. After stirring for 10 min, 1.05-1.10 equiv of the crude isonitrile (5.25-5.50 mmol) in THF was added. The reaction mixture was stirred for 30 min to 1 h. Ethyl acetate was added, and the organic layer was washed with three portions of water. The organic layer was separated, dried over MgSO₄, and filtered, and the solvent was removed under reduced pressure to yield the desired 1-imidoylbenzotriazole in a good yield. Further purification was achieved by recrystallization with EtOH. In the cases of 5b,g,e,k, flash column chromatography was used to get an analytically pure sample; however, prolonged time on the column led to rapid hydrolysis of the desired compound, as demonstrated by the conversion of $5e \rightarrow 6$.

N-[1-(1*H*-Benzotriazol-1-yl)-2-morpholinoethylidene]-2,5-dichloroaniline (5a). Compound 5a was crystallized from ether as white plates (92%), mp 96–97 °C; ¹H NMR (CDCl₃) δ 2.43–2.48 (m, 4H), 3.41–3.45 (m, J= 4.7 Hz, 4H), 4.16 (s, 2H), 7.05–7.12 (m, 2H), 7.39 (d, J= 9.0 Hz, 1H), 7.51 (t, J= 7.7 Hz, 1H), 7.63 (t, J= 7.8 Hz, 1H), 8.14 (d, J= 8.1 Hz, 1H), 8.51 (d, J= 8.4 Hz, 1H). ¹³C NMR (CDCl₃) δ 53.3, 56.1, 66.6, 115.5, 120.0, 120.7, 123.0, 124.6, 125.8, 129.7, 130.3, 131.4, 132.5, 145.5, 146.5, 154.7. Anal. Calcd for C₁₈H₁₇Cl₂N₅O: C, 55.40; H, 4.39; N, 17.94. Found: C, 55.46; H, 4.48; N, 17.95.

N-[1-(1*H*-Benzotriazol-1-yl)-2-dimethylaminoethylidene]-2,5-dichloroaniline (5b). Compound 5b was obtained as a pale yellow oil following column chromatography using ethyl acetate/hexanes (1:3) (96%); 1 H NMR (CDCl₃) 5 2.24 (s, 6H), 3.98 (s, 2H), 7.03−7.13 (m, 2H), 7.39 (d, J = 8.4 Hz, 1H), 7.48 (t, J = 7.2 Hz, 1H), 7.61 (t, J = 7.2 Hz, 1H), 8.13 (d, J = 8.2 Hz, 1H), 8.51 (d, J = 8.4 Hz, 1H). 13 C NMR (CDCl₃) 5 45.6, 55.9, 115.3, 119.9, 121.3, 123.3, 124.9, 125.5, 129.4, 130.5, 131.4, 132.6, 144.9, 146.4, 155.6. Anal. Calcd for C₁₆H₁₆Cl₂N₅: C, 55.18; H, 4.34; N, 20.11. Found: C, 54.85; H, 4.36; N, 19.96. HRMS (FAB) calcd for C₁₆H₁₆Cl₂N₅ (M + 1): 348.0783. Found: 348.0788.

N-[1-(1*H*-Benzotriazol-1-yl)-2-morpholinoethylidene]-4-nitroaniline (5c). Compound 5c was crystallized from ethanol as pale yellow plates (93%), mp 164–165 °C; ¹H NMR (CDCl₃) δ 2.43–2.48 (m, 4H), 3.43–3.48 (m, 4H), 4.14 (s, 2H), 7.13 (d, J= 8.9 Hz, 2H), 7.54 (dt, J= 1.0, 7.4 Hz, 1H), 7.64 (dt, J= 1.0, 7.4 Hz, 1H), 8.15 (d, J= 8.2 Hz, 1H), 8.30 (d, J= 8.7 Hz, 2H), 8.41 (d, J= 8.2 Hz, 1H). ¹³C NMR (CDCl₃) δ 53.2, 54.9, 66.5, 115.1, 120.0, 120.1, 124.7, 125.9, 129.7, 131.1, 144.1, 146.5, 153.0, 153.3. Anal. Calcd for C₁₈H₁₈N₆O₃: C, 59.01; H, 4.95; N, 22.94. Found: C, 59.18; H, 5.09; N, 23.21.

N-[1-(1*H***-Benzotriazol-1-yl)-2-morpholinoethylidene]-3-nitroaniline (5d).** Compound **5d** was crystallized from ethanol as white plates (97%), mp 107–108 °C; ¹H NMR (CDCl₃) δ 2.45–2.50 (m, 4H), 3.48–3.53 (m, 4H), 4.13 (s, 2H), 7.39 (d, J = 8.4 Hz, 1H), 7.50–7.68 (m, 3H), 8.02–8.08 (m, 2H), 8.16 (d, J = 8.1 Hz, 1H), 8.46 (d, J = 8.4 Hz, 1H). ¹³C NMR (CDCl₃) δ 53.2, 54.5, 66.6, 115.3, 115.5, 119.0, 120.1, 125.9, 126.6, 129.5, 129.7, 131.2, 146.6, 148.0, 148.5, 154.5. Anal. Calcd for C₁₈H₁₈N₆O₃: C, 59.01; H, 4.95; N, 22.94. Found: C, 59.09; H, 5.03; N, 22.95.

N-[1-(1*H*-Benzotriazol-1-yl)-2-(*N*-methylanilino)ethylidene]-2,5-dichloroaniline (5e). Compound 5e was obtained as yellow plates following column chromatography using ethyl acetate/hexanes (1:15) (45%), mp 110–112 °C; ¹H NMR (CDCl₃) δ 2.66 (s, 3H), 5.19 (s, 2H), 6.40–6.46 (m, 3H), 6.74 (t, J=7.4 Hz, 1H), 6.90 (dd, J=2.4, 8.7 Hz, 1H), 7.17 (t, J=7.1 Hz, 2H), 7.28 (t, J=8.1 Hz, 1H), 7.51 (t, J=7.7 Hz, 1H), 7.61 (t, J=7.8 Hz, 1H), 8.16 (d, J=8.1 Hz, 1H), 8.39 (d, J=8.4 Hz, 1H). 13 C NMR (CDCl₃) δ 39.8, 54.0, 112.2, 115.3, 117.7, 119.3, 120.0, 120.5, 124.0, 125.8, 129.2, 129.8, 129.9, 131.5, 132.5, 144.7, 146.4, 147.0, 153.8. Anal. Calcd for C₂₁H₁₇N₅Cl₂: C, 61.47; H, 4.18; N, 17.07. Found: C, 61.28; H, 4.15; N, 17.03.

N-[1-(1*H*-Benzotriazol-1-yl)-2-(*N*-methylanilino)ethylidene]-3-nitroaniline (5f). Compound 5f was crystallized from ethanol as white plates (91%), mp 138–139 °C; ¹H NMR (CDCl₃) δ 2.61 (s, 3H), 5.25 (s, 2H), 6.35 (d, J = 7.8 Hz, 2H), 6.70 (dt, J = 0.9, 6.9 Hz, 1H), 6.92–6.96 (m, 1H), 7.07–7.14 (m, 2H), 7.31 (t, J = 8.1 Hz, 1H), 7.49–7.56 (m, 2H), 7.62 (dt, J = 1.2, 7.7 Hz, 1H), 7.76–7.82 (m, 1H), 8.17 (dd, J = 1.2, 8.1 Hz, 1H), 8.34 (d, J = 8.1 Hz, 1H). ¹³C NMR (CDCl₃) δ 39.6, 52.9, 112.2, 112.6, 115.1, 118.0, 120.1, 123.8, 125.9, 129.0, 129.1, 129.8, 131.4, 146.4, 147.0, 147.4, 148.1, 152.5. Anal. Calcd for C₂₁H₁₈N₆O₂: C, 65.27; H, 4.70; N, 21.75. Found: C, 65.33; H, 4.85; N, 21.80.

N-[1-(1*H*-Benzotriazol-1-yl)-2-morpholinoethylidene]-benzylamine (5g). Compound 5g was obtained as a pale yellow oil following column chromatography using ethyl acetate/hexanes (1:3) (94%); 1 H NMR (CDCl₃) δ 2.63–2.67 (m, 4H), 3.63–3.68 (m, 4H), 4.25 (s, 2H), 5.10 (s, 2H), 7.26–7.50 (m, 6H), 7.55 (dt, J=1.2, 7.7 Hz, 1H), 8.08 (d, J=8.1 Hz, 1H), 8.46 (d, J=8.1 Hz, 1H). 13 C NMR (CDCl₃) δ 53.5, 53.8, 53.9, 66.8, 115.6, 119.6, 125.2, 126.9, 127.5, 128.5, 129.0, 131.6, 139.6, 146.5, 153.8. HRMS (FAB) calcd for C₁₉H₂₁N₅O: 336.1824. Found 336.1791.

N-[1-(1*H*-Benzotriazol-1-yl)-2-piperidinoethylidene]-4-nitroaniline (5h). Compound 5h was crystallized from ethanol as white plates (88%), mp 155 °C (decomp); ¹H NMR (CDCl₃) δ 1.29 (br s, 6H), 2.36 (br s, 4H), 4.10 (s, 2H), 7.11 (d, J = 9.0 Hz, 2H), 7.52 (t, J = 7.8 Hz, 1H), 7.63 (t, J = 7.4 Hz, 1H), 8.15 (d, J = 8.1 Hz, 1H), 8.28 (d, J = 9.0 Hz, 2H), 8.41 (d, J = 8.4 Hz, 1H). ¹³C NMR (CDCl₃) δ 23.5, 25.7, 54.3, 55.7, 115.3, 120.1, 120.1 124.6, 125.8, 129.6, 131.3, 143.9, 146.6, 153.5, 154.2. Anal. Calcd for C₁₉H₂₀N₆O₂: C, 62.62; H, 5.53; N, 23.06. Found: C, 62.52; H, 5.67; N, 22.88. HRMS (FAB) calcd for C₁₉H₂₀N₆O₂: 365.1726. Found 365.1693.

N-[1-(1*H*-Benzotriazol-1-yl)-4-methyl-2-morpholinopentylidene]-3-nitroaniline (5i). Compound 5i was crystallized from ethanol as pale yellow plates (87%), mp 150−153 °C; ¹H NMR (CDCl₃) δ 0.88 (t, J = 6.1 Hz, 6H), 1.58−1.73 (m, 1H), 1.74−1.92 (m, 2H), 2.50−2.65 (m, 4H), 3.47−3.64 (m, 4H), 4.61 (t, J = 7.4 Hz, 1H), 7.21 (d, J = 7.8 Hz, 1H), 7.42−7.58 (m, 3H), 7.89−7.98 (m, 2H), 8.12 (d, J = 8.3 Hz, 2H). ¹³C NMR (CDCl₃) δ 22.5, 22.9, 26.0, 38.2, 51.0, 65.4, 67.1, 114.3, 115.4, 118.8, 120.2, 125.6, 125.9, 129.4, 129.4, 131.5, 146.2, 147.6, 148.7, 155.9. Anal. Calcd for C₂₂H₂₆N₆O₃: C, 62.54; H, 6.20; N, 19.89. Found: C, 62.16; H, 6.50; N, 19.88.

N-[1-(Benzotriazolyl)-2-morpholino-2-phenylethylidene]-2,5-dichloroaniline (5j). This compound was crystallized from ethanol as yellow microcrystals (89%), mp 186–187 °C, the

^{(12) (}a) Burckhalter, J. H.; Stephens, V. C.; Hall, L. A. R. *J. Am. Chem. Soc.* **1952**, *74*, 3868. (b) Smith, J. R. L.; Sadd, J. S. *J. Chem. Soc., Perkin Trans. 1* **1975**, 1181.

product was obtained as a mixture of Bt^2 and Bt^1 isomers (2.6: 1, respectively); 1H NMR (CDCl $_3$) [both isomers unless stated] δ 2.50–2.53 (m, 4H, Bt^1 isomer), 3.11–3.14 (m, 4H, Bt^2 isomer), 3.46–3.52 (m, 4H, Bt^1 isomer), 3.67–3.70 (m, 4H, Bt^2 isomer), 5.99 (s, 1H, Bt^1 isomer), 6.17 (s, 1H, Bt^2 isomer), 6.55–7.65 (m, 22H), 7.89 (d, J=8.3 Hz, 1H, Bt^2 isomer) 8.09 (d, J=8.4 Hz, 1H, Bt^1 isomer). ^{13}C NMR (CDCl $_3$) [both isomers] δ 48.9, 49.0, 67.1, 67.3, 109.4, 110.0, 110.4, 110.7, 113.6, 113.7, 117.6, 117.9, 119.7, 119.9, 120.0, 120.4, 123.9, 124.5, 127.8, 128.4, 128.5, 128.7, 128.8, 129.0, 129.6, 129.9, 130.2, 133.2, 133.5, 133.7, 134.5, 135.5, 140.8, 141.4, 143.3, 143.9, 145.2, 145.8, Anal. Calcd for $C_{24}H_{21}$ - Cl_2N_5O : C, 61.81; H, 4.54; N, 15.02. Found: C, 61.71; H, 4.72; N, 14.88.

N-[1-(1*H*-Benzotriazol-1-yl)-2-piperidinoethylidene]-2,5-dichloroaniline (5k). Compound 5k was obtained as a pale yellow oil following column chromatography using ethyl acetate/hexanes (1:2) (87%); 1 H NMR (CDCl₃) 0 1.27 (br s, 6H), 2.36 (br s, 4H), 4.11 (s, 2H), 7.02−7.12 (m, 2H), 7.34 (d, J= 8.4 Hz, 1H), 7.47 (t, J= 7.7 Hz, 1H), 7.60 (t, J= 7.7 Hz, 1H), 8.12 (d, J= 8.4 Hz, 1H), 8.51 (d, J= 8.1 Hz, 1H). 13 C NMR (CDCl₃) 0 23.5, 25.6, 54.3, 56.8, 115.5, 119.8, 120.7, 122.8, 124.2, 125.5, 129.4, 130.0, 131.3, 132.2, 145.6, 146.4, 155.3. Anal. Calcd for C₁₉H₁₉Cl₂N₅: N, 18.04. Found: N, 17.79. HRMS (FAB) calcd for C₁₉H₁₉Cl₂N₅: 388.1096. Found 388.1092.

Preparation of α -**Amino Thioacetimidates 1a**— \mathbf{g} . 1-Imidoyl benzotriazole $\mathbf{5}$ (3 mmol), an appropriate thiol (1.1 equiv), and sodium methoxide (1 equiv) were heated under reflux in dry THF for 16—18 h under a nitrogen atmosphere. Ethyl acetate was then added to the reaction mixture, which was washed with 1% NaOH, dried over MgSO₄, and filtered. The solvent was removed under reduced pressure to yield either an oily residue that was purified by column chromatography on silica gel using hexanes/ethyl acetate mixtures $(1\mathbf{a},\mathbf{b},\mathbf{d}-\mathbf{g})$, or a solid which was recrystallized from ethanol $(1\mathbf{c})$.

4-Methylphenyl *N*-(2,5-Dichlorophenyl)-2-morpholinothioacetimidate (1a). Compound 1a was obtained as yellow needles following column chromatography using hexanes/ethyl acetate (10:1) (44%), mp 88–90 °C; ¹H NMR (CDCl₃) δ 2.34 (s, 3H), 2.39–2.46 (m, 4H), 3.17 (s, 2H), 3.62–3.68 (m, 4H), 6.81 (br s, 1H), 6.94 (dd, J = 2.2, 8.5 Hz, 1H), 7.14 (d, J = 8.1 Hz, 2H), 7.24 (d, J = 2.9 Hz, 1H), 7.43 (d, J = 8.1 Hz, 2H). It was not possible to obtain satisfactory 13 C NMR spectra for this compound due to poor resolution as explained in the text. Attempts to heat the sample to either 60 °C (in CDCl₃) or 100 °C (in CD₃C₆D₅) led to substantial decomposition. Anal. Calcd for C₁₉H₂₀Cl₂N₂OS: C, 57.72; H, 5.10; N, 7.09. Found: C, 57.69; H, 5.19; N, 6.92.

Benzyl *N*-(2,5-Dichlorophenyl)-2-morpholinothioacetimidate (1b). Compound 1b was obtained as a pale yellow oil following column chromatography using hexanes/ethyl acetate (3:1) (53%); 1 H NMR (CDCl₃) 3 2.38–2.45 (m, 4H), 3.12 (s, 2H), 3.58–3.68 (m, 4H), 4.24 (s, 2H), 6.73 (d, J = 2.5 Hz, 1H), 6.94 (dd, J = 2.5, 8.5 Hz, 1H), 7.18–7.32 (m, 4H), 7.33–7.39 (m, 2H), 13 C NMR (CDCl₃) 3 34.3, 53.5, 61.1, 66.6, 120.3, 122.1, 123.9, 127.0, 128.4, 129.1, 130.5, 132.7, 137.5, 148.5, 172.7. Anal. Calcd for $C_{19}H_{20}Cl_{2}N_{2}OS$: C, 57.72; H, 5.10; N, 7.09. Found: C, 57.75; H, 5.22; N, 6.81. HRMS (FAB) calcd: 395.0752. Found: 395.0755.

Phenyl *N*-(2,5-Dichlorophenyl)-2-(*N*-methyl-*N*-phenylamino)thioacetimidate (1c): Compound 1c was obtained as white needles following recrystallization from EtOH/ethyl acetate (92%), mp 107–108 °C; 1 H NMR (CDCl₃) (at 60 °C) $^{\circ}$ C $^{\circ}$

4-Methylphenyl *N*-(**4-Nitrophenyl**)-**2-morpholinothio-acetimidate** (**1d**). Compound **1d** was obtained as pale yellow needles following column chromatography using hexanes/ethyl acetate (**4**:1) (**44**%), mp **148**–**149** °C; ¹H NMR (CDCl₃) (at **60** °C)

 δ 2.36–2.39 (m, 7H), 3.15 (s, 2H), 3.66–3.70 (m, 4H), 6.93 (d, J = 7.9 Hz, 2H), 7.16 (d, J = 7.9 Hz, 2H), 7.42 (d, J = 7.9 Hz, 2H), 8.20 (d, J = 7.9 Hz, 2H). 13 C NMR (CDCl₃) δ 21.2, 53.1, 63.1, 66.8, 119.9, 125.1, 125.3, 129.8, 135.9, 140.1, 144.1, 155.9, 167.4* [*Quaternary carbon signal very small, but integration shows it to be present. After attempted high-temperature NMR experiments, this peak at ca. 168 ppm shows up more clearly, but significant decomposition of the compound is observed by the appearance of new signals in the aromatic region.] Anal. Calcd for $C_{19}H_{21}N_3O_3S$: C, 61.44; H, 5.70; N, 11.31. Found: C, 61.17; H, 6.07; N, 11.23.

4-Methylphenyl *N***-Benzyl-2-morpholinothioacetimidate (1e).** Compound **1e** was obtained as pale yellow plates following column chromatography using hexanes/ethyl acetate (3:1) (46%), mp 73–75 °C; 1 H NMR (CDCl₃) (at 60 °C) δ 2.18–2.24 (m, 4H), 2.36 (s, 3H), 3.01 (s, 2H), 3.55–3.61 (m, 4H), 4.67 (s, 2H), 7.15 (d, J=7.9 Hz, 2H), 7.22–7.28 (m, 1H), 7.30–7.43 (m, 4H), 7.51 (d, J=8.1 Hz, 2H). 13 C NMR (CDCl₃) (at 60 °C) δ 21.1, 52.7, 56.7, 63.8, 66.8, 126.6, 126.7, 127.8, 128.3, 129.4, 136.0, 139.2, 139.6, 161.7. Anal. Calcd for $C_{20}H_{24}N_2OS$: C, 70.55; H, 7.10; N, 8.23. Found: C, 70.32; H, 7.21; N, 8.00.

4-(*tert***-Butyl)-2-methylphenyl** *N***-benzyl-2-morpholinothioacetimidate (1f).** Compound **1f** was obtained as a pale orange oil after purification by column chromatography using hexanes/ethyl acetate (3:1) (75%); 1 H NMR (CDCl₃) (at 60 $^{\circ}$ C) δ 1.31 (s, 9H), 2.10–2.20 (m, 4H), 2.45 (s, 3H), 3.00 (s, 2H), 3.46–3.58 (m, 4H), 4.74 (s, 2H), 7.10–7.45 (m, 7H), 7.57 (d, J=2.0 Hz, 1H). 13 C NMR (CDCl₃) δ 21.1, 31.3, 34.4, 53.1, 57.0, 64.2, 66.9, 126.6, 126.7, 127.9, 128.4, 129.9, 130.2, 133.8, 139.6, 139.8, 149.7, 161.7. Anal. Calcd for C₂₄H₃₂N₂OS: C, 72.68; H, 8.13; N, 7.06. Found: C, 73.28; H, 8.38; N, 7.44.

4-Methylphenyl *N***-(3-Nitrophenyl)-2-morpholino-(2-isobutyl)thioacetimidate (1g).** Compound **1g** was obtained as a pale yellow oil following column chromatography using hexanes/ethyl acetate (5:1) (59%); ¹H NMR (CDCl₃) δ 0.84 (t, J= 7.4 Hz, 6H), 1.42–1.51 (m, 1H), 1.59–1.81 (m, 2H), 2.33 (s, 3H), 2.35–2.44 (m, 2H), 2.62–2.71 (m, 2H), 3.38 (dd, J= 5.9, 8.1 Hz, 1H), 3.62–3.68 (m, 4H), 7.09–7.18 (m, 3H), 7.35 (d, J= 8.6 Hz, 2H), 7.45 (t, J= 8.1 Hz, 1H), 7.64 (t, J= 8.1 Hz, 1H), 7.88–7.94 (m, 1H). ¹³C NMR (CDCl₃) δ 21.1, 22.4, 22.7, 25.0, 35.5, 48.8, 64.0, 67.4, 114.6, 118.4, 125.8, 125.8, 129.6, 129.8, 135.9, 139.9, 148.6, 150.7, 168.8. HRMS (FAB) for C₂₃H₂₉N₃O₃S calcd: 428.2008. Found: 428.2008.

N-(2,5-Dichlorophenyl)-2-(*N*-methylanilino)acetamide (6). Compound **6** was obtained as pale yellow prisms following column chromatographic purification of compound **5e** using hexanes/ethyl acetate (15:1) (32%), mp 111–112 °C; ¹H NMR (CDCl₃) δ 3.11 (s, 3H), 3.99 (s, 2H), 6.82 (d, J=7.8 Hz, 2H), 6.89 (t, J=7.4 Hz, 1H), 7.00 (dd, J=2.4, 8.4 Hz, 1H), 7.21 (d), J=8.4 Hz, 1H), 7.32 (t, J=8.1 Hz, 2H), 8.53 (d, J=2.4 Hz, 1H), 9.16 (br s, 1H). ¹³C NMR (CDCl₃) δ 40.1, 59.8, 112.0, 113.8, 119.5, 121.0, 124.6, 129.4, 129.6, 133.4, 134.8, 149.0, 168.9 Anal. Calcd for C₁₅H₁₄N₂Cl₂O: C, 58.27; H, 4.56; N, 9.06. Found: C, 58.29; H, 4.55; N, 9.10.

N-(2,5-Dichlorophenyl)-*N*-methyl-2-(*N*-methylanilino)-*N*-phenylethanimidamide (7). This compound was obtained as a pale yellow oil following column chromatography of compound **5e** using hexanes/ethyl acetate (15:1) (5%); ¹H NMR (CDCl₃) δ 2.23 (s, 3H), 3.33 (s, 3H), 3.91 (s, 2H), 6.25 (d, J = 8.5 Hz, 2H), 6.64 (d, J = 2.5 Hz, 1H), 6.68 (d, J = 7.3 Hz, 1H), 6.77 (dd, J = 2.5, 8.5 Hz, 1H), 7.08–7.26 (m, 6H), 7.33–7.40 (m, 2H). ¹³C NMR (CDCl₃) δ 38.7, 40.8, 53.2, 112.2, 116.9, 122.1, 123.1, 126.7, 126.9, 128.7, 129.6, 129.9, 132.3, 145.3, 147.5, 148.5, 157.8. HRMS (FAB) for $C_{22}H_{21}N_3Cl_2$ calcd: 398.1191. Found: 398.1230.

Acknowledgment. We thank Dr. C. Dennis Hall, Mr. Boris Rogovoy, and Dr. Olga V. Denisko (University of Florida) for their helpful advice and input.

JO0016935